咨询热线

400-998-1966

当前位置:首页  >  技术文章  >  利用微尺度3D打印和矿物涂层技术助力功能性微流控研究

利用微尺度3D打印和矿物涂层技术助力功能性微流控研究

更新时间:2022-03-21      点击次数:613



多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。


近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating"为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。


图1. 岩石微模型的制备过程


在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。


图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。


图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。


基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。


总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的"岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。


论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract


(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供)

上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:


1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?

李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。

利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。


2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?

李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。

高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。