技术文章

Technical articles

当前位置:首页技术文章微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形

微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形

更新时间:2022-04-02点击次数:778


北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知.名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field"。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。


微柱阵列(BMF nanoArch®S140  GR resin)



填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。


众所.周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。


BMF nanoArch®S140System