技术文章

Technical articles

当前位置:首页技术文章3D打印在压电材料方面的应用

3D打印在压电材料方面的应用

更新时间:2022-06-28点击次数:947

1880年,法国物理学家居里兄弟发现,把重物发在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。利用压电材料的这些特性可以实现机械振动(声波)和交流电的相互转换。打火机的点火装置,就是利用此原理进行打火。后来压电材料广泛应用于各种传感器(如图1)中,例如换能器、传感器、驱动器、声纳、手机和机器人等方面。

图1  压电陶瓷传感器


压电效应的产生是晶胞中正负离子在外界条件作用下出现相对位移,使得正负电荷的中心不再重合,导致晶体发生宏观极化。压电电荷的流动方向取决并且遵循其陶瓷和晶体材料的晶格排列,因此压电陶瓷和压电聚合物复合材料的压电常数与其结构组成有着密切的相关性。美国弗吉尼亚理工大学的郑小雨(Rayne Zheng)教授及其实验室的博士团队使用3D打印的方式实现了新型压电材料的制造,并且采用这种方法制备了具有高压电特性的材料,实现电压在任意方向可被放大、缩小和反向的特征

图2 高灵敏度压电材料的合成以及3D打印制造


图3  压电材料3D打印制造(弗吉尼亚理工大学)


 这种压电材料的制造方法为:首先采用功能化剂(三甲氧基甲基丙烯酸丙脂)共价接到PZT(锆钛酸铅压电陶瓷)颗粒上合成表面功能化的压电纳米粒子,表面通过硅氧烷键在表面留下自由的甲基丙烯酸酯(如图2-a);通过提高表面功能化水平,提高复合颗粒材料的压电相应水平,使之达到最大(如图2-b);最后通过面投影3D打印方式实现纳米颗粒的粘接成型(如图2-c和图3),最终得到需求的压电材料结构,其显微镜结构(如图2-d)。

基于此项技术,压电新型材料在很多领域得到应用



 

P1

多功能柔性可穿戴智能材料

 

通过电压激活后能够设计和制造出一系列新型智能材料。该三维材料具有任意形状,任意内部结构复杂度,并且每一个节点、单元和材料本身任意部位均具有压电感应功能,无需任何附加传感器即可实现电压输出。根据该材料的特性,开发出了柔性压电材料(如图4),为将来可穿戴柔性器件开发做好基础准备。

图4  打印的柔性材料薄片(弗吉尼亚理工大学)

P2

自感应吸能材料及护甲

 

由于这种智能材料各个部位均具有压电感应,其打印支撑的三维结构将无需任何附加传感器,并探测出任意位置的压力或者震动。现有传感技术和结构损伤检测当中,需要在各个位置上布满大量的压电传感器,并且对于复杂结构,需要通过复杂算法优化计算,最终来确定传感器阵列的布置。然而,这种自感应三维材料,则可以通过任意位置的压电结构材料,首.次解决了这项难题,并且通过智能桥梁结构得到验证(图5)。

图5 智能桥梁检测实验

P3

矢量传感领域

 

通过人工晶格设计制成的压电超材料,可以很灵巧的实现矢量探测传感功能,通过利用改型材料不同结构有不同压力静电相应的特性,设计如图(6-b)所示的结构,并对不同方向进行压力测试,可以实现三个方向的不同压电系数的压电材料制备。

图6  力方向感知测试

 

国内西安交通大学陈小明教授也在应用3D打印技术研究压电材料,其将压电聚合物或陶瓷与光敏树脂混合制备成复合材料,然后将复合材料利用深圳摩方(BMF)的3D打印设备S140进行打印成型,从而制成相应的压电器件。除此之外,利用3D打印技术可以制备具有多种微结构的器件(图7),相比于传统的微纳加工工艺具有成型快,成本低,可定制化等优点。打印的微结构复合压电器件相比于平模,极大的提高了压电输出,器件性能成倍增加。

图7  3D打印的多种微结构压电器件图


BMF的S140(图8)设备打印光学精度达到10um,打印层厚10~40um,打印幅面最大能够达到94mm(L)*52mm(W)*45mm(H),而且其支持多种树脂材料打印,例如韧性树脂、耐高温树脂、生物医用树脂、柔性树脂等等,能够最大限度的满足不同客户的科研需求。

图8   S140设备简图


 

通过3D打印来实现各向异性和定向效应的高响应性压电材料,有效促进了3D传感器材料方向的发展。通过这种材料,用户可以为目标应用进行设计、放大和抑制等操作模式。这种新型结构与功能的压电材料突破了传统传感器整列部署的模式,通过3D打印制造方式为未来智能材料设计提供了一种思路。